Motor axon excitability during Wallerian degeneration.

نویسندگان

  • Mihai Moldovan
  • Susana Alvarez
  • Christian Krarup
چکیده

Axonal loss and degeneration are major factors in determining long-term outcome in patients with peripheral nerve disorders or injury. Following loss of axonal continuity, the isolated nerve stump distal to the lesion undergoes Wallerian degeneration in several phases. In the initial 'latent' phase, action potential propagation and structural integrity of the distal segment are maintained. The aim of this study was to investigate in vivo the changes in membrane function of motor axons during the 'latent' phase of Wallerian degeneration. Multiple indices of axonal excitability of the tibial nerve at ankle distal to axotomy were monitored by 'threshold-tracking'. The plantar compound muscle action potentials (CMAPs) were recorded under anesthesia in three animal models: 8-week-old wild-type mice, 8-week-old slow Wallerian degeneration mutant mice and 3-year-old cats. We found that the progressive decrease in CMAP following crush injury was associated with slowing of conduction and marked abnormalities in excitability: increased peak threshold deviations during both depolarizing and hyperpolarizing threshold electrotonus, enhanced superexcitability during the recovery cycle and increased rheobase. In the context of decreased current-threshold slope and increased chronaxie, these deviations in excitability were consistent with a decrease in voltage-dependent Na(+) and K(+) conductances. Our data suggest that during the 'latent phase' of Wallerian degeneration there is a gradual disruption in ion-channel function leading to abnormalities in excitability that precede conduction failure and axonal disintegration. These findings may have clinical relevance and should be taken into consideration in interpretation of the specificity of abnormalities in excitability measures in disorders characterized by axonal degeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence that Wallerian degeneration and localized axon degeneration induced by local neurotrophin deprivation do not involve caspases.

The selective degeneration of an axon, without the death of the parent neuron, can occur in response to injury, in a variety of metabolic, toxic, and inflammatory disorders, and during normal development. Recent evidence suggests that some forms of axon degeneration involve an active and regulated program of self-destruction rather than a passive "wasting away" and in this respect and others re...

متن کامل

Regulation of Calcium Influx in Drosophila Motorneuron Axon Degeneration

.....................................3 Introduction...............................4 Materials and Methods...........17 Results........................................21 Development of the Ex vivo Assay.............................................................................................................21 Wallerian Degeneration Proceeds Normally in the Ex vivo Assay..........................

متن کامل

Wallerian degeneration of zebrafish trigeminal axons in the skin is required for regeneration and developmental pruning.

Fragments of injured axons that detach from their cell body break down by the molecularly regulated process of Wallerian degeneration (WD). Although WD resembles local axon degeneration, a common mechanism for refining neuronal structure, several previously examined instances of developmental pruning were unaffected by WD pathways. We used laser axotomy and time-lapse confocal imaging to charac...

متن کامل

Critical signaling pathways during Wallerian degeneration of peripheral nerve

Wallerian degeneration is a critical biological process that occurs in distal nerve stumps after nerve injury. To systematically investigate molecular changes underlying Wallerian degeneration, we used a rat sciatic nerve transection model to examine microarray analysis outcomes and investigate significantly involved Kyoto Enrichment of Genes and Genomes (KEGG) pathways in injured distal nerve ...

متن کامل

Wlds Protection Distinguishes Axon Degeneration following Injury from Naturally Occurring Developmental Pruning

Axon pruning by degeneration remodels exuberant axonal connections and is widely required for the development of proper circuitry in the nervous system from insects to mammals. Developmental axon degeneration morphologically resembles injury-induced Wallerian degeneration, suggesting similar underlying mechanisms. As previously reported for mice, we show that Wlds protein substantially delays W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain : a journal of neurology

دوره 132 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2009